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SYMPOSIUM

Similarity of Crocodilian and Avian Lungs Indicates Unidirectional
Flow Is Ancestral for Archosaurs
C. G. Farmer1

257 S 1400 E, Salt Lake City, UT 84112, USA

From the symposium ‘‘Integrated Biology of the Crocodilia’’ presented at the annual meeting of the Society for

Integrative and Comparative Biology, January 3–7, 2015 at West Palm Beach, Florida.

1E-mail: cg.frmr@gmail.com

Synopsis Patterns of airflow and pulmonary anatomy were studied in the American alligator (Alligator mississippiensis),

the black caiman (Melanosuchus niger), the spectacled caiman (Caiman crocodilus), the dwarf crocodile (Osteolaemus

tetraspis), the saltwater crocodile (Crocodylus porosus), the Nile crocodile (Crocodylus niloticus), and Morelet’s crocodile

(Crocodylus moreletii). In addition, anatomy was studied in the Orinoco crocodile (Crocodylus intermedius). Airflow was

measured using heated thermistor flow meters and visualized by endoscopy during insufflation of aerosolized propolene

glycol and glycerol. Computed tomography and gross dissection were used to visualize the anatomy. In all species studied

a bird-like pattern of unidirectional flow was present, in which air flowed caudad in the cervical ventral bronchus and its

branches during both lung inflation and deflation and craniad in dorsobronchi and their branches. Tubular pathways

connected the secondary bronchi to each other and allowed air to flow from the dorsobronchi into the ventrobronchi. No

evidence for anatomical valves was found, suggesting that aerodynamic valves cause the unidirectional flow. In vivo data

from the American alligator showed that unidirectional flow is present during periods of breath-holding (apnea) and is

powered by the beating heart, suggesting that this pattern of flow harnesses the heart as a pump for air. Unidirectional

flow may also facilitate washout of stale gases from the lung, reducing the cost of breathing, respiratory evaporative water

loss, heat loss through the heat of vaporization, and facilitating crypsis. The similarity in structure and function of the

bird lung with pulmonary anatomy of this broad range of crocodilian species indicates that a similar morphology and

pattern of unidirectional flow were present in the lungs of the common ancestor of crocodilians and birds. These data

suggest a paradigm shift is needed in our understanding of the evolution of this character. Although conventional

wisdom is that unidirectional flow is important for the high activity and basal metabolic rates for which birds are

renowned, the widespread occurrence of this pattern of flow in crocodilians indicates otherwise. Furthermore, these

results show that air sacs are not requisite for unidirectional flow, and therefore raise questions about the function of

avian air sacs.

Introduction

Thomas Huxley, with his usual sagacity, pointed out
the importance of the similarity of the respiratory
systems of crocodilians and birds when he wrote,

Thus, not withstanding all the points of difference,
there is a fundamental resemblance between the re-
spiratory organs of Birds and those of Crocodiles;
pointing to some common form (doubtless exem-
plified by some of the extinct Dinosauria), of which
both are modifications (Huxley 1882).

More than a hundred years after Huxley’s work, a
deeper understanding of the striking similarity

between these lungs became evident with the discov-
ery that crocodilians share with birds a rather re-
markable pattern of unidirectional airflow, in which
gases move throughout most of the conducting air-
ways in the same direction during both inhalation
and exhalation due to the presence of aerodynamic
valves (Farmer 2010; Farmer and Sanders 2010). The
importance of this discovery lies not only in expand-
ing our understanding of the fundamental resem-
blance of these respiratory systems, adding to the
preponderance of evidence that allies these clades,
but also in the broader context of demonstrating
again the fallacy of the argument of irreducible
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complexity, for which the avian lung has been held
up as an example (Denton 1985).

The avian respiratory system is certainly complex
(Duncker 1971; Maina 2000): Akester (1960) stated
that it is, ‘‘..the most complicated respiratory system
that has ever evolved’’. This complexity appears to
have led to a number of erroneous views. Most no-
table is the error of linking patterns of skeletal pneu-
maticity to patterns of airflow and efficiency of gas
exchange. King (1957), in his study of patterns of
pneumaticity of the domestic chicken, noted that
these patterns vary widely from one individual to
the next, and even between different sides of the
body of the same individual, and that a lack of com-
prehension of this variability has led to invalid gen-
eralizations about pneumaticity. King (1957) argued
that it is paramount to understand this variability in
order to ascertain the limits of generalizations.
Indeed, he stated, ‘‘It is a remarkable fact that after
three centuries of research all the great questions of
the functional anatomy of the avian respiratory tract
still remain unanswered’’ and attributed the slow
progress to a failure to recognize fundamental vari-
ations in structure and function in different avian
species. Further evidence against linking patterns of
pneumaticity to patterns of airflow and efficiency of
gas exchange is discussed elsewhere (Farmer 2006).
Another problem that has plagued understanding of
these respiratory systems is that numerous authors
use anatomy alone to extrapolate information
about physiology, when what is needed are empirical,
physiological data to draw conclusions based on ev-
idence. For example, numerous publications state
that the anatomy of crocodilians is consistent with
crosscurrent gas exchange and therefore this mecha-
nism of gas exchange was probably present in dino-
saurs too (see discussion of this topic by Perry and
Sander (2004) and references therein). However,
crosscurrent gas exchange cannot be determined by
studies of the anatomy. Measurements on blood and
lung gases are requisite to elucidate the mechanism
of gas exchange in these lungs. A third area of con-
fusion is the role of the air sacs in the aerodynamic
valves. In a brilliant and technically extraordinary
study, Brackenbury (1989) bilaterally occluded the
abdominal air sacs, as well as the cranial and
caudal thoracic air sacs, and found no effect on the
aerodynamic valve in resting or in exercising chick-
ens. However, other workers conclude, ‘‘abdominal
air sacs . . . are crucial for unidirectional flow in the
paleopulmo of birds’’ (Perry and Sander 2004) even
though the abdominal sacs in some birds, such as the
kiwi, are so reduced in size their existence has been
debated (Huxley 1882).

The avian respiratory system consists of a network
of conducting airways that anastomose to form a
circuit: this architecture lies in stark contrast to the
more familiar blindly ending bronchial tree of mam-
mals. The avian airways connect to avascular air sacs,
which effect ventilation. The functional underpin-
nings of this design are not understood in spite of
a long history of study, which is reviewed by
Duncker (1971) dating back to work by the Dutch
anatomist and physician, Volcher Coiter (1573), and
by Allen (1951) for avian studies dating back to
Aristotle (Coiter 1573; Allen 1951). Initially, studies
and speculations about patterns of airflow through
this circuit attributed the unidirectional flow to
physical valves, either passive leaflets such as those
found in the heart or the veins, or active sphincters
(Brandes 1924; Bethe 1925; Portier 1928;
Dotterweich 1930, 1936; Wolf 1933; Vos 1934).
However, Hazelhof (1951) demonstrated that this
flow can arise from the topography of the airways
and that mechanical valves are not requisite, nor
have they been found (Hazelhoff 1951). Hazelhoff’s
experiments and ideas have been refined and vali-
dated by a number of investigations (Brackenbury
1971, 1972, 1979; Bret and Schmidt-Nielsen 1972;
Scheid and Piiper 1972, 1989; Scheid et al. 1972;
Banzett et al. 1987, 1991; Butler et al. 1988; Kuethe
1988; Wang et al. 1992; Brown et al. 1995; Maina
and Africa 2000). Butler et al. (1988) suggested four
possible mechanisms governing gas flow in birds: (1)
elastic pressures associated with the changes in
volume of the air sacs, (2) resistive pressures arising
from gas friction, (3) unsteady inertial pressures aris-
ing from the acceleration and deceleration of airway
gas during the inspiratory–expiratory cycle, (4) dy-
namic pressures arising from convective momentum
of gas. Gases of differing densities and velocity were
used to gain insight into the importance of convec-
tive inertia, especially for the inspiratory valve (Wang
et al. 1988; Brown et al. 1995). These studies showed
that convective momentum, which is a function of
the density of the gas multiplied by the square of its
linear speed, is key to the inspiratory valve (Wang
et al. 1988). The mechanical underpinnings of the
expiratory valve are less well understood.
Furthermore, the importance of certain anatomical
features for the functioning of both the inspiratory
and expiratory valves is still unclear.

Duncker (1971) reviewed and discussed features of
the anatomy that may play essential roles in the
aerodynamic valves. He listed:

(1) The point of origin of the ventrobronchi, with
rigidly extended openings directed cranially, so
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that these airways form an acute angle with the
intrapulmonary bronchus. These bronchi dilate
remarkably in width.

(2) The origin of the dorsobronchi in the region of
the primary bronchus that arches with the con-
cave side mesial. The initial portions of the
dorsobronchi are narrow and their diameters
can be regulated. The dorsobronchi also form
acute angles with the primary bronchus.

(3) The origin of the laterobronchi opposite to the
anterior dorsobronchi, their initial angle also
forming an acute angle with the intrapulmon-
ary bronchus.

(4) Connection of the posterior air sacs to the pri-
mary laterobronchus.

Other features that have been suggested to play a role
in the aerodynamic valves include a narrowing of the
primary bronchus proximal to the opening of the
ventrobronchi, the segment accelerans (Wang et al.
1992), and an expansion of the width of the intra-
pulmonary bronchus prior to the openings of
the dorsobronchi. Finally, as previously mentioned,
the air sacs have been purported to play a role in the
valve (see Perry and Sander 2004).

The discovery of the same pattern of airflow in
crocodilians with similar anatomical features as
birds provides an opportunity to identify common,
conserved features that may be important to the
aerodynamic valves. Although this study focuses on
documenting patterns of airflow in crocodilians, I
have also attempted to identify common anatomical
characters of crocodilians and birds to help throw
into sharp relief the features that may be fundamen-
tally important for the aerodynamic valves from
those that are unimportant. I have relied heavily
on Duncker’s (1971) monograph for generalizations
about avian anatomy. These comparisons are meant
to stimulate and help direct further empirical re-
search, which will perhaps expand our understanding
of the aerodynamic valves both of birds and of croc-
odilians, as well as elucidate selective drivers for these
patterns of flow. In the summary, I speculate on
several testable hypotheses for these selective drivers.

Materials and methods

In vivo experiments

In vivo procedures were approved by the University
of Utah Animal Care and Use Committee and were
carried out on the American alligators. I measured
intrapulmonary airflow by implanting a dual therm-
istor flow meter (HEC 132 C, Hector Engineering,
Ellettsville, IN, USA). I visualized airflow using an

endoscope with a diameter of 0.9 mm (Model
number HSF 009 1000 NVK, Hawkeye Pro Microflex
Borescope, Gradient Lens Corporation) and with a
field of view of 55 degrees. I held the scope in one
location while animals insufflated an aerosolized mix-
ture of propylene glycol and glycerol (Froggy’s Fog—
Swamp Juice, Froggys Fog, LLC) and I recorded videos
using a Luxxor Video Camera System (LXX-VBSM)
that was interfaced to a computer with a USB 2.0
Image Capture Interface (VC-USB2). I recorded the
videos with Debut Video Capture software at a rate
of frame capture of 29.97 frames per second and deter-
mined the direction of airflow visually. I recorded air-
flow at the nares with a pneumotachograph (Hans
Rudolph Inc.). I amplified this signal with an AC/DC
strain gauge amplifier (P122, Grass Instruments,
Warwick, RI, USA) and converted all analog signals
to digital (Biopac Systems, Goleta, CA, USA) at a sam-
pling rate of 60 Hz and recorded these signals on a
computer using AcqKnowledge software (Biopac
Systems). I measured the electrocardiogram using cu-
taneous leads, sampling at 200 Hz and filtering and
amplifying the signals (P122, Grass Instruments).

Ex vivo experiments

I measured airflow in separate experiments in excised
lungs by implanting a dual thermistor flow meter
(HEC 132 C, Hector Engineering) or by visualization
of aerosolized propylene glycol and glycerol as de-
scribed in the in vivo methods. I intubated the tra-
chea and ventilated the lung with a syringe. I
measured tracheal flow with a pneumotachograph
(Hans Rudolph Inc.) as described in the in vivo
methods. Sample sizes varied depending on species.
The largest sample sizes were obtained for the
American alligator (N¼ 11), the saltwater crocodile
(N¼ 10), and the spectacled caiman (N¼ 5), and so
conclusions are weighted toward these species.
Sample size was 3 or less for the remaining species.
Information on mass was not available for all the
individuals because of variation in the way they
were obtained. For example, in many of the animals
only torsos were available, having been donated by
abattoirs. Where this information is known it is
reported.

Anatomy

To visualize the anatomy I used both gross dissec-
tions and computed tomography. I reconstructed
these CT data into images with OsiriX (v.5.8.2
64-bit).

Unidirectional flow in crocodilian lungs 3
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Results and discussion

Much of the anatomy of the lungs of alligators and
crocodiles has been described previously (Huxley
1882; Perry 1989, 1990; Farmer and Sanders 2010;
Sanders and Farmer 2012; Schachner et al. 2013).
The focus here is investigating whether or not uni-
directional flow is common throughout the crocodil-
ians and highlighting features that have not been
described previously in detail, or features that are
common to all the crocodilians I have studied to
date and which can be compared with similar fea-
tures in birds. I also noted differences that corrobo-
rate or cast doubt on the role of aspects of avian
anatomy in the aerodynamic valve.

In many crocodiles (e.g., Crocodilus niloticus,
Crocodylus porosus, Crocodylus palustris, Crocodylus
intermedius), this study (Huchzermeyer 2003; Grigg
and Kirshner 2015); and some birds (Clench 1978;
Fitch 1999), the trachea and primary bronchi do not
travel a straight course to the lungs, but form loops
in larger individuals (Fig. 1). In birds this loop is
thought to play a role in sound production (Fitch
1999). Its function in crocodilians is unknown. In
contrast, the trachea of alligators, spectacled
caiman, black caiman, and the dwarf crocodile run
in a straight course to the carina and the primary
bronchi also course directly toward their respective
lungs (this study; also Grigg and Kirshner 2015).
Sound production in alligators occurs in the larynx
(Riede et al. 2011, 2015) but a role for the trachea
has not been ruled out. Unidirectional flow occurred
independently of the presence or absence of a loop-
ing trachea.

The position of the lungs within the thoracic
cavity was consistent across all species examined.
The dorsal mesentery, a median vertical sheet of
tissue, forms a septum in the thoracic cavity and
cranial abdominal cavity. The alimentary canal runs
through the middle of the sheet while the lungs and
two halves of the liver lay to either side. The lungs
occupy the right and left sides of the cranial region
of the thoracic cavity, the pleural cavity, the apex
extending to the eighth or ninth cervical vertebra
and the base extending in its dorsal portion to ap-
proximately the ninth thoracic vertebra (Fig. 1A–C)
(Mushonga and Horowitz 1996). Here the lung
attaches to the liver through the pulmohepatic liga-
ment, which forms part of the wall (mainly lateral)
of a recess between the liver and the lung, the hepa-
topulmonary bursa (Fig. 1) (Butler and Parker 1889;
Mushonga and Horowitz 1996). These bursae com-
municate through a narrow passage with the pleural
cavities. The hepatopulmonary ligament passes into a

membranous tract that merges with the caudal lung
and the mediastinal tissue. It has been proposed that
this serous tissue is homologous with the avian obli-
que septum (Huxley 1870; Butler and Parker 1889;
Pool 1909), which fuses with the dorsal pericardium
and together with the dorsal portion of the sternum
separates the avian body into a cavum respiratorium,
containing the lungs and all air sacs except the ab-
dominal air sac, and caudoventrally into a cavum
cardioabdominale, containing the heart, liver, ali-
mentary tract, and abdominal air sacs. In birds, the
cavum respiratorium is subdivided by the horizontal
septum (avian diaphragm), the lungs, and intrapul-
monary bronchi lying dorsal to the horizontal
septum in the cavum pulmonale, and all the air
sacs except the abdominal air sacs lying ventral to
the horizontal septum in the cavum subpulmonale
(Duncker 1971). In birds the oblique and horizontal
septa are formed when portions of the lung invade
the pulmonary folds and divide them, the ventral
portion of the fold giving rise to the oblique
septum and the dorsal portion giving rise to the
horizontal septum (Pool 1909; Duncker 1971). In
crocodilians a similar topography exists with the
gas-exchange parenchyma lying dorsal to the ventral
aspects of the intrapulmonary bronchus and the sac-
cular regions of the lung lying dorsal to the repre-
sentative of the oblique septum (Fig. 1C) but ventral
to the intrapulmonary bronchus, in the topographi-
cal position of the avian horizontal septum. Figure 1
illustrates the topographical location in the body
cavity of the avian horizontal and oblique septa,
superimposed on the lateral image of an American
alligator.

In crocodilians the parietal pleura attaches dorsally
to the longus colli muscles, the bodies of the last
cervical and the thoracic vertebral bodies, and to
the intercostal muscles and ribs. Deep sulci are
formed in the lungs by the ninth cervical ribs and,
to a lesser degree, the subsequent thoracic ribs.
Ventromedially the lung attaches directly to the me-
diastinal pleura and ventrally to the esophagus. The
pleural space, where the visceral and parietal pleura
are readily separated, completely surrounds the
apical region of the lung to the root of the lung,
demarcated by the hilus, but is found only dorsally
and laterally caudal to the hilus (Fig. 1). The primary
bronchus and pulmonary vessels enter the ventrome-
dial aspect of the lung approximately half way be-
tween the apex and the dorsal portion of the base
(Fig. 1). At the hilus, the pulmonary artery is cranial
and the pulmonary vein caudal to the bronchus. The
medioventral surface of the lung caudal to the hilus
does not float freely in the pleural cavity but adheres
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Fig. 1 Anatomy and patterns of airflow in crocodilians. American alligator (A–G) in lateral view (A–D), dorsal view (E–F), and ventral

view (G). The apex of the lung can be seen underling cervical vertebrae 8 and 9 while the dorsal part of the base of the lung extends

to thoracic vertebra 9. View of transection in the parasagittal plane without (B) and with (C) colored voxels illustrating the airways.
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to the underlying structures of the pericardial sac,
portions of the liver, left and right aorta, and esoph-
agus, except where there are bursae, as noted above
and by Mushonga and Horowitz (1996).

The intrapulmonary bronchus retains cartilaginous
support in its most proximal portion, but this is lost
as the bronchus courses laterally, caudally, and dor-
sally. In alligators, the bronchus increases in diameter
along this path until it approaches the level of ver-
tebral centra at which point it curves medially and
gradually decreases in diameter as it continues to the
dorsal base of the lung (Fig. 1). The first secondary
bronchus to arise from the primary bronchus does so
from its lateral aspect very near the midline of the
lung in the sagittal plane (Fig. 1). The opening to
this bronchus is a conical, cartilaginous structure
that contains smaller ostia in its walls. The conical
portion of the CVB opens into a secondary bronchus
that is poorly vascularized and widens remarkably as
it courses craniad. It is the largest of the secondary
airways, and extends to lie alongside the cervical ver-
tebra. This bronchus has been termed the cervical
ventral bronchus (CVB) (Farmer and Sanders 2010;
Sanders and Farmer 2012) and postulated to be ho-
mologous to the avian embryonic mesial moiety of
the first ventrobronchus that develops into the cer-
vical air sac and to the first avian ventrobronchus.
Measurements of flow have been made in this bron-
chus in all species and the flow is always caudad (Fig.
1). The volume of this bronchus indicates it is serv-
ing both a storage function and as a major conduct-
ing airway. It is the same airway termed D1 by
Broman (1940). The ostia of the conical portion of
the CVB connect to several other poorly vascularized
bronchi that run in tandem along the CVB, although
not as far craniad.

On the dorsal aspect of the intrapulmonary pri-
mary bronchus, very near the ostium to the CVB, a
large and long bronchus arises that courses dorsally

and then cranially (M1 of Broman 1940, and red
bronchus of Fig. 1), coursing medially and parallel
to the CVB (Fig. 1). There is very little distance be-
tween the ostium of M1 and the CVB and yet the
flow runs craniad in M1, as it does in the remaining
dorsobronchi (Fig. 1). M1 has clear connections to
medioventral locules (chambers) that overlie the
heart. These locules occupy the location of the inter-
clavicular and thoracic air sacs of birds. There is no
fusion of the locules at the midline, as there is with
the avian interclavicular sacs. The intimate connec-
tion of these chambers to the heart implicates them
in generating the cardiogenic unidirectional airflow
measured during apnea (Farmer 2010) (Fig. 2). As
the heart beats it may mechanically agitate these loc-
ules, which are firmly attached to the pericardium,
producing airflow. However, cardiogenic flow may
also arise from the pulsations of the blood vessels
within the lungs. Further experiments are needed
to sort out the mechanisms underlying cardiogenic,
unidirectional flow.

Small parabronchi connect the ventrobronchus
and its branches to the network of dorsobronchi,
conducting air through the majority of gas-exchange
parenchyma (Fig. 1). The minimum diameters of
these connections are approximately 1 mm, which
falls within the size range of the diameters for the
avian parabronchi (Duncker 1971).

Besides the region of the lung that overlies the
heart, the caudoventral aspect of the lung is also
composed of poorly vascularized locules (Fig. 1).
The diameters of the ostia to these chambers tend
to be much smaller than those leading to the dorso-
bronchi and they lie opposite the ostia to the dorso-
bronchi, perhaps serving to direct flow into the
dorsobronchi during exhalation. Based on their to-
pographical position in the body and the patterns of
flow in these locules, which is primarily tidal, they

Fig. 1 Continued

Dashed lines (C) illustrate purported homologs of the oblique septum (small dots) and the topological position corresponding to the

avian diaphragm ¼ horizontal septum (large dots). Arrows indicate direction of airflow. Ventral view (G) illustrates the intimate location

of the pericardium with the lungs. (H) Dorsal view of spectacled caiman showing the position in the body and the CVB and

caudoventral locules. (I) Ventral view of adult female Orinoco crocodile showing looping trachea and primary bronchi. (J–L) Saltwater

crocodile. (J) Ventral view of juvenile shows looping trachea whereas the trachea is straight in a hatchling (K). (L) Dorsolateral view of

juvenile showing the parietal pleura (reflected back), the visceral pleura, and the pulmohepatic bursa, the roof of which has been

suggested to be homologous to the avian oblique septum. (M, N) Unhatched crocodilian. (M) The plane of section (40) shown in N.

(N) A number of features illustrated in (C) and (L), including parietal and visceral pleura, pleural cavity (cavum pulmonale), pulmo-

hepatic ligament (homolog of avian oblique septum), pulmohepatic recess¼ hepatopulmonary bursa. CVB, cervical ventrobronchus;

c, cervical vertebra; d, dorsal vertebra; D2, dorsobronchi 2; D3, dorsobronchi 3; da, representative (homolog) of avian

diaphragm¼ horizontal septum; h, right lobe of the liver; h0, left lobe of the liver lobe; l, laterobronchi¼ caudoventral locules; m.d.,

diaphragmaticus muscle; oe, esophagus; p, parabronchi and gas-exchange parenchyma; pe, pericardium; p.p., parietal pleura; pul, lung;

spl0, fatty ‘‘spleen’’, st., stomach cavity; t, trachea; !, pulmohepatic ligament¼ homolog of avian oblique septum; ", omental septum

(ventral portion of posthepatic septum); 2, right pulmohepatic recess¼ hepatopulmonary bursa; 20, left pulmohepatic recess; 3, peri-

toneal cavity; 4, pleural cavity; 48, pulmohepatic portion of body-cavity; M, N after, Butler and Parker (1889); D, E after, Farmer and

Sanders (2010).
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Fig. 2 Cardiogenic unidirectional flow. (A–C) Electrocardiograms and flow traces collected from the cervical ventrobronchus and a

dorsobronchus for three different animals. (A) and (B) were collected during a period of apnea. No breathing is shown. The trace

shown in (C) was collected shortly after the animal ran on a treadmill and includes a recording of airflow at the nares recorded with a

pneumotachograph.
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appear to be homologous to the avian laterobronchi
and air sacs.

Summary

In this study unidirectional flow was measured
during ventilation in excised lungs in all species
studied, with flow in the CVB running caudad and
flow in the dorsobronchi running craniad (Fig. 1). In
addition, unidirectional flow was measured in vivo in
American alligators. This unidirectional flow contin-
ued during periods of apnea, powered by the beating
heart (Fig. 2).

Birds and crocodilians share a number of pulmo-
nary features that are strikingly similar, suggesting
that a similar topography was present in their
common ancestor. These features include the separa-
tion of the thoracoabdominal cavity by an oblique
septum into a cavum respiratorium and a cavum
cardioabdominale. The cavum respiratorium is fur-
ther subdivided into a region bounded ventrally by
the oblique septum and dorsally by the ventral floor
of the intrapulmonary bronchus. This region is rem-
iniscent of the avian cavum subpulmonale and con-
tains avascular locules reminiscent of the avian air
sacs. The region containing the intrapulmonary
bronchus and the dorsobronchi and parabronchi
lies dorsal, in the pleural cavity, the cavum pulmo-
nale. Another striking similarity is the acute angle
formed between the intrapulmonary bronchus and
the ventrobronchi, with rigidly extended openings
into the ventrobronchi, which dilate remarkably.
This topography seems well conserved and may be
important to the aerodynamic valve.

However, several observations of the anatomy of
crocodilians also suggest that we do not fully under-
stand the aerodynamic valves in either crocodilians
or birds. Duncker (1971) reviewed and discussed fea-
tures of the anatomy of birds’ lungs that may play
roles in the aerodynamic valves (see the above dis-
cussion). However, many of these characters are not
present in crocodilians. For example, avian style air
sacs and a segment accelerans are not present in
crocodilians. Duncker (1971) proposed that the
origin of the dorsobronchi in the region of the pri-
mary bronchus where it arches in a convex manner
near the lateral body wall is important. However, the
first dorsobronchus of crocodilians arises very near
the ostium to the CVB, well before the intrapulmon-
ary bronchus begins its curve toward medial in the
midline, suggesting that the topographical position
of the dorsobronchi in birds at the medial bend of
the intrapulmonary bronchus may not play a role in
the valve. However, the relationship between the

ostia of the dorsobronchi and the avascular locules
in crocodilians and the avian dorsobronchial ostia to
the air sacs is very consistent, and supports a role of
this topography in the expiratory valves. Finally, in
both clades the intrapulmonary bronchus dilates
considerably in its caudal course, also suggesting an
aerodynamic function. The sensitivity of the aerody-
namic valves to these features may be revealed by
computational studies of fluid dynamics. These dif-
ferences may mean that the same mechanisms do not
underpin the aerodynamic valves of crocodilians and
birds. The differences certainly underscore the need
for additional research into this fascinating area of
biology.

The looping pattern of flow seen in birds and
crocodilians shares so many remarkable features
that the parsimonious explanation for this similarity
is shared inheritance as originally proposed by
Huxley (1882). This discovery begs the question of
the functional significance for this pattern of flow. It
has recently been postulated (Farmer 2015) that the
unidirectional pattern of flow is serving to efficiently
flush gases from the lung, thereby reducing the
number of breaths required compared with the ex-
ponential wash out seen in mammals. For example,
in humans a tidal volume of about 0.5 L is mixed
with a residual lung volume of about 3 L with each
breath, diluting the freshly inspired air (West et al.
2007). In contrast, with unidirectional flow a bolus
of air moves from one compartment of the lung to
the next, reducing the mixing of stale and freshly
inspired air. Thus, unidirectional flow could reduce
rates of ventilation for a given rate of gas exchange,
thereby reducing the work of breathing, reducing re-
spiratory water loss, conserving heat, and improving
crypsis. It has also been postulated that cardiogenic,
unidirectional flows facilitate gas exchange during
apnea (Farmer 2010).
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Vos HJ. 1934. Über den Weg der Atemluft in der Entenlunge.
Z Vergl Physiol 21:552–78.

Wang N, Banzett RB, Butler JP, Fredberg JJ. 1988. Bird lung
models show that convective inertia effects inspiratory
aerodynamic valving. Respir Physiol 73:111–24.

Wang N, Banzett RB, Nations CS, Jenkins FA. 1992. An aero-
dynamic valve in the avian primary bronchus. J Exp Biol
262:441–5.

West JB, Watson RR, Fu Z. 2007. The human lung: Did
evolution get it wrong? Eur Respir J 29:11–7.

Wolf S. 1933. Zur kenntnis von Bau und Funktion der
Reptilienlunge. Zool Jahrb Abt Anat Ontol 57:139–90.

10 C. G. Farmer

 by guest on July 4, 2015
http://icb.oxfordjournals.org/

D
ow

nloaded from
 

http://dx.doi.org/10.7717/peerj.60
http://dx.doi.org/10.7717/peerj.60
http://icb.oxfordjournals.org/

	2015 ICB Farmer cover
	2015 Integrative Biology Similarity in Croc and Bird Lungs

